
15-451: Algorithm Design and Analysis, Carnegie Mellon University

Online Algorithms

Today we’ll be looking at finding approximately-optimal solutions for problems where the dif-
ficulty is not that the problem is necessarily computationally hard but rather that the algorithm
doesn’t have all the information it needs to solve the problem up front.

Specifically, we will be looking at online algorithms, which are algorithms for settings where
inputs or data is arriving over time, and we need to make decisions on the fly, without knowing
what will happen in the future. This is as opposed to standard problems like sorting where you
have all inputs at the start. Data structures are one example of online algorithms (they need to
handle sequences of requests, and to do well without knowing in advance which requests will
be arriving in the future).

Objectives of this lecture

In this lecture, we will

- define and motivate online algorithms

- solve the rent-or-buy problem with an online algorithm and analyze its performance

- analyze various strategies for the list update problem. In particular, we will see how
potential functions are key ingredients in the analysis of online algorithms.

- analyzing online paging algorithms and see how randomization allows us to achieve
provably better performance than any deterministic algorithm.

1 Framework and Definition
We are given a problem in which the input arrives over time rather than being known entirely
up front. At each point in time, we have to make some decision, and each such decision is
irrevocable, i.e., we can not change our mind later. Depending on the choices we make, we
incur some cost, depending on the cost model of the problem. The goal is to perform well
relative to an optimal omniscient algorithm, i.e., one that can predict the future and see the
entire input in advance.

This is similar to the way in which we analyze approximation algorithms, by comparing the
performance of our algorithm to that of the best possible algorithm (except that in this case,
our definition of “best” is that it can cheat and see the future). We define the competitive ratio
of an online algorithm very similarly to the approximation ratio.

1

Definition: Competitive Ratio

An online algorithm is called c -competitive if for all possible inputsσ

ALG(σ)≤ c ·OPT(σ),

where ALG(σ) is the cost incurred by the online algorithm on the inputσ (which it does
not know in advance) and OPT(σ) is the cost of an optimal omnipotent algorithm that
can seeσ in advance. The factor c is called the competitive ratio of the algorithm.

2 Rent or buy?
Here is a simple online problem that captures a common issue in online decision-making,
called the rent-or-buy problem.

Problem: Rent or buy

Its the middle of the snow season and you are planning on going skiing. You can rent a
pair of skis at $r per day, or buy a pair for $b and keep them forever. You would like to
ski for as many days as possible, however, you do not know how many more days of the
season will be viable weather for skiing. Each day you find out whether the weather is
still good. At some point, you discover that the ski season is over. Your choice is to decide
whether to rent or buy skis on each day, with the goal of minimizing the total amount of
money that you spend.

Let’s walk through a concrete example. You can either rent skis for $50 or buy them for $500. If
we know the future in advance, the solution is to buy immediately if we know that there are at
least 10 days of viable skiing weather, and if not, just always rent. The tricky part is designing an
online algorithm that doesn’t know the future. It has no idea how many days of viable whether
there will be. Lets start with some simple but sub-optimal strategies to illustrate:

- Always immediately buy: One valid online strategy is to immediate buy on the first day if the
weather is good. The worst case input for the this strategy is when we only get to go skiing
once, so we could have just paid $50, so the competitive ratio is 500/50 = 10, we paid 10×
more than we could have.

Rent forever: Another strategy is to never buy skis and just always rent. In this strategy, the
worst case input is that the ski season goes on arbitrarily long, and we end up paying an arbi-
trarily high amount of money, when the optimal choice would have been to buy immediately,
so the competitive ratio is actually∞ (or unbounded).

In general, since after buying the skis the algorithm has no more decisions to make, we can
characterize any online algorithm for the rent-or-buy problem by the day on which it decides
to buy. Now observe that in general, the worst-case input for such an algorithm is that the
weather is bad on the day after it buys the skis. With this in mind, here is one more bad strategy
before we hone in on the optimal one.

2

- Rent five times then buy: How about we rent five times, then decide that it is time to buy.
The worst-case input is that the weather is good for six days, then bad. In this case, our algo-
rithm pays 5×50+500= 750, but the optimal algorithm would just always rent, which costs
6×50= 300, so this is 2.5-competitive.

Well that’s certainly a lot better than 10. It seems like if we hedge our bets by renting longer, we
get a better competitive ratio. At some point, this will stop being true, though. In particular,
it never makes sense to plan to rent for more than 10 days, because then we should have just
bought the skis for sure. So the most hedging we can do is to rent for 10 days then buy. This is
called the better-late-than-never algorithm.

Algorithm: Better-late-than-never

We rent for b /r −1 daysa, then we buy. In other words, we buy on day b /r .

aIf r does not divide b , then we should rent for ⌈b /r ⌉ − 1 days, but we will just assume that r divides b
for simplicity

Theorem: Better-late-than-never is 2-competitive

Better-late-than-never is a 2-competitive algorithm for the rent-or-buy problem.

Proof. Suppose the weather is good for n days. We have to consider two cases:

1. If n r < b (i.e., n < b /r), then the optimal solution is to always rent, but in this case, our
algorithm doesn’t buy either, so it is optimal.

2. If n r ≥ b , the optimal solution buys immediately, but our algorithm first rents for b /r −1
days before buying, so the ratio is

�

b
r −1
�

r + b

b
=

b − r + b

b
= 2−

r

b
≤ 2.

Now as we will naturally want to ask: can we do better?

Problem 1. Show that better-late-than-never has the best possible competitive ratio for the
rent-or-buy problem for deterministic algorithms when b is a multiple of r .

3 List Update
This is a nice problem that illustrates some of the ideas one can use to analyze online algo-
rithms. Here are the ground rules for the problem:

Problem: List Update

- We begin with a list of n items 1, 2, . . . , n . Imagine a linked list starting with 1 and end-
ing with n .

3

	Framework and Definition
	Rent or buy?
	List Update

